The Future of Fiber Optic Communications: Data Center & Mobile

DesignCon 2020 Santa Clara, CA 28 January 2020 Chris Cole

Acknowledgment

The insights in this presentation were gained as an employee of Finisar Corp. (acquired by II-VI Inc. in Sept. 2019) while:

- developing multiple generations of transceivers: 10G, 25G, 40G, 50G, 100G, 200G, & 400G
- collaborating with optics industry end users, System OEMs, transceiver & component vendors, and universities

Conference Program Description

- Fiber optics are ubiquitous in cloud computing, data storage, and mobile applications, driven by demand for high-bandwidth communications. The global fiber optics market is predicted to grow to \$9 billion by the end of 2025.
- The keynote will discuss trends in fiber optics for data center and mobile, including new technologies like silicon photonics (SiPh) and co-packaging. Also covered will be major technical advances in lasers, ICs, wavelengthdivision multiplexing (WDM), FEC, and DSP, looking in detail at two major trends: fiber optics replacing copper and coherent replacing direct detection.

3

Outline

Datacom Rates

- Coherent in Telecom
- Coherent in Datacom
- Silicon Photonics

4

Datacom (Ethernet) Gb/s Data Rates vs Time

Time	Datacom (Ethernet) Gb/s MAC Rates					
1990's - 2006	0.1	1	10			10

• What's the next rate?

Datacom (Ethernet) Gb/s Data Rates vs Time

Time	Datacom (Ethernet) Gb/s MAC Rates							
1990's - 2006	0.1	1	10			10		
2006 - 2007	0.1	1	10	100		10		

100Gb/s vs. 40Gb/s Ethernet IEEE Debate

- 100Gb/s (4x25G) pro arguments
 - 10x is <u>conventional</u> rate step, fewer deployment steps for end users
 - 25GBaud NRZ technology focus will lead to lower long-term cost
- 40Gb/s (4x10G) pro arguments
 - 10GBaud technology is mature, low-risk, low-cost now
 - 40G has ~3x radix vs. 100G for 1.28T switch ASIC
 - 40Gb/s: 32x
 - 100Gb/s: 12x
 - Right server I/O step after 10Gb/s
- Both rates were adopted by the IEEE, after 40G was identified as critical to high-volume, near-term Datacenter deployment

7

Datacom (Ethernet) Gb/s Data Rates vs Time

Time	Datacom (Ethernet) Gb/s MAC Rates						
1990's - 2006	0.1	1	10				10
2006 - 2007	0.1	1	10	10	00		10
2008 - 2013	1		10	40	100		~2 or 4

• What's the next rate?

Datacom (Ethernet) Gb/s Data Rates vs Time

Time	Datacom (Ethernet) Gb/s MAC Rates						
1990's - 2006	0.1	1	10				10
2006 - 2007	0.1	1	10	100			10
2008 - 2013	1		10	40	100		4
2014 - 2015	1		10	40	100	400	4

400Gb/s vs. 200Gb/s Ethernet IEEE Debate

- 400Gb/s (4x100G) pro arguments
 - 4x is <u>conventional</u> rate step, fewer deployment steps
 - 100GBaud PAM-4 technology focus: lower long-term cost
- 200Gb/s (4x50G) pro arguments
 - 25GBaud technology is mature, low-risk, low-cost now
 - 200G has 2x radix vs. 400G for 12.8T switch ASIC
 - 200Gb/s: 64x (or for 100Gb/s: 128x)
 - 400Gb/s: 32x
 - Right server I/O step after 100Gb/s
- Both rates were adopted by the IEEE after 200G was identified as important for Mobile applications in China

The Big Four Plans - 2019

- AWS
 - 400G DR4 broken out to four 100GbE
- Google
 - Shifting from 100GbE to 200GbE in the form of 2x200G modules
 - 2x400G modules the next step
- Facebook
 - New high-density 100GbE switch fabric for 4X capacity
 - 200GbE the next step
- Microsoft
 - Will deploy 400GbE inside data centers after 400ZR availability
- No clear plans to deploy 400GbE for some time!

LightCounting High-Speed Ethernet Optics Report – April 2019 – page 12

Why no near-term 400GbE plans?

- Still rather early in the 100GbE life cycle
- 12.8Tb switches provide only 32 ports of 400GbE
- Cannot scale a switch fabric with just 32 ports
- No practical means to build a 128-port 400GbE switch such as Facebook and Arista have announced
- Concerns about availability of 400G optical modules
- Expectation that switches and modules with 100Gb/s SerDes will result in efficient and economical 400GbE

LightCounting High-Speed Ethernet Optics Report – April 2019 – page 13

Next High-Volume Ethernet Data Rate

- Huge industry investment into 1st Gen 400GbE (with great expectation that this will be the next high-volume Datacom rate) will have no ROI
- 1st Gen 400GbE optics are small volume, primarily for Telecom
- 200GbE is the next high-volume Datacom rate
- Common characterization of 200GbE as an "interim" step to 400GbE is just like the characterization of 40GbE as an "interim" step to 100GbE
- 400GbE will be high volume when following are mature:
 - 100Gb/s lane SerDes
 - 7nm CMOS PHYs
 - TX and RX 56GBaud optics have excess bandwidth

Datacom (Ethernet) 1st Million Units Shipped Milestones

Years shipped after IEEE 802.3 Standard publication of 1st million units :

• 10GbE	6	(2008)
• 40GbE	4	(2014)
• 100GbE*	6	(2016)
• 200GbE	4	(2021, predicted)
• 400GbE*	6	(2023, predicted

*4 years from 802.3 Standard development start to publication

Datacom (Ethernet) Gb/s Data Rates vs Time

Time	Datacom (Ethernet) Gb/s MAC Rates								Rate X
1990's - 2006	0.1	1	1	0					10
2006 - 2007	0.1	1	10		100				10
2008 - 2013	1		1	0	40	100			4
2014 - 2015	1		10		40	100	4	00	4
2016 to today	2.5	5	10	25	40/50	100	200	400	2

• What's the next rate?

1.6Tb/s vs. 800Gb/s Ethernet IEEE Debate

- 1.6TGb/s pro arguments
 - 4x is <u>conventional</u> rate step, fewer deployment steps
 - 800GbE is an "interim" step to 1.6TbE
- 800Gb/s pro arguments
 - 100GBaud PAM4 technology will be mature, low-risk, low-cost
 - 800GbE has 2x radix vs. 1.6TbE
- Why 1.6TbE?
- Same obsession with bandwidth that drove 100GbE and 400GbE
- Same fantasies about shipment volumes as for 100GbE and 400GbE Example: IEEE NEA 802.3 Ad Hoc meeting, 21 Jan 2020, report from Dell'Oro Group, using "actual data", forecasts 1st million 400GbE by 2020

Datacom (Ethernet) Gb/s Data Rates vs Time Prediction

Datacom (Ethernet) Gb/s MAC Rates								
25	50	100	200	400	800	1600		

- IEEE will split the baby and adopt both 800GbE and 1.6TbE rates
- Suppliers will develop 1st Gen 1.6TbE transceivers which will have no ROI
- 1st million units shipped:
 - 800GbE: 2028
 - 1.6TbE: 2030

Outline

Datacom Rates

Coherent in Telecom

- Coherent in Datacom
- Silicon Photonics

Telecom Today

- Installed fiber has been the Network capacity constraint
- Increasing Spectral Efficiency (SE) of the fiber has been the R&D focus
- SE increase techniques:
 - DSP/CMOS
 - Coherent, SD-FEC
 - Spectral shaping, Dense DWDM
 - Flex-Grid, Flex-Ethernet
 - Super-channels
- What's next?
- Conventional thinking says increase Bit Rate, GBaud, and Mod. order
- Shannon limit and escalating cost means meager SE gains

Shannon-Hartley Theorem

- $C = BW \log_2(1 + S/N)$
 - C ≜ Channel Capacity
 - BW ≜ Bandwidth
 - S ≜ Signal Power
 - N \triangleq Noise Power

Guidance to increase C:

- S/N limited: increase BW to support higher Baud rate, ex. Datacom
- BW limited: increase S/N to support higher order modulation, ex. Telecom
- If both BW and S/N limited, increase channels, i.e. parallel fiber

Fundamental Limits

Telecom Tomorrow

- Installed fiber is reaching full utilization
- New fiber will have to be installed to increase capacity
- Cost is dominated by installation, while the cost of fiber is minor
- Cost to install massive amount of fiber, most of which is initially unused, is same as installing only what's needed
- Spectral Efficiency is a minor performance metric when fiber is plentiful
- What's next?
- Per λ bit rate, GBaud, Mod. order will be reduced to enable cheap, massively parallel optics
- This is the opposite of current R&D focus, ... and conventional thinking

Telecom Prediction

- 100G Coherent will dominate Long Haul
- 400G Coherent (i.e. ZR) will dominate Metro
- There will be no price premium on performance
- It will be all about low cost just like in Datacom, i.e. ugly
- At least the construction and fiber guys will make money ... for a while

Outline

- Datacom Rates
- Coherent in Telecom

Coherent in Datacom

Silicon Photonics

IMDD vs. Coherent in the Datacenter Debate

- 10G/λ and slower rate Transport was IMDD (Intensity Modulation Direct Detection)
- 40G/λ Transport was transitional
- 100G/ λ and faster rate Transport is Coherent
 - SNR increase
 - Fiber impairment compensation
 - Link adaptation
- Conventional thinking is that Coherent will replace IMDD for Datacom links inside the datacenter, just like it replaced IMDD for Telecom links

CWDM4 1km SMF Spec Limits

- L0 λ : 1271nm, λ_{min} = 1264.5nm w/ $\lambda_{zero_dispersion_max}$ = 1324nm
 - Dispersion = -6 ps/nm
 - PMD = 0.5 ps
 - Loss = 0.47dB
- L3 λ : 1331nm, λ_{max} = 1337.5nm w/ $\lambda_{zero_dispersion_min}$ = 1304nm
 - Dispersion = 3 ps/nm
 - PMD = 0.5 ps
 - Loss = 0.43dB
- Inside the Datacenter, fiber impairments and variability are not important
- TX, Link (SMF, connectors, passives) and RX loss drives SNR and design

Direct Detection (DD) Signal Path

- $p_{\text{IN-TX}} = 4 p_0$ $p_{\text{RX}} = \alpha_{\text{SMF}} p_{\text{TX}}$
- $p_{TX} = \alpha_{TX} \alpha_{AOP} p_{IN-TX} \qquad p_{PD} = \alpha_{RX} p_{RX} / 4$
- $i_{SIG} = \alpha_{AVG} r_{PD} p_{PD}$

Design Con 2020 The Future of Fiber Optic Communications 27

Direct Detection (DD) Signal Path Variables

 $p_0 \triangleq$ Input POP (Peak Optical Power) reference

 $p_{IN-TX} \triangleq TX \text{ input POP} = AOP (Average OP) if CW$

 $\alpha_{AOP} \triangleq TX POP$ to AOP modulation loss vs. er (extinction ratio)

 $\alpha_{TX} \triangleq TX$ path intrinsic loss at modulator bias point

 $p_{TX} \triangleq TX$ total output AOP

 $\alpha_{SMF} \triangleq Link total power loss (connectors, SMF, other passives)$

 $p_{RX} \triangleq RX$ total input AOP

 $\alpha_{RX} \triangleq RX$ path intrinsic loss

 p_{PD} , $r_{PD} \triangleq RX PD$ input AOP, responsivity

 $\alpha_{AVG} \triangleq PD \ AOP$ to average electrical signal power loss vs. er

Direct Detection (DD) SNR

$$\begin{split} &i_{\text{SIG}} \triangleq \text{RX PD signal current} \\ &i_{\text{SIG}} = \alpha_{\text{AVG}} \ r_{\text{PD}} \ p_{\text{PD}} = \ \alpha_{\text{AVG}} \ \alpha_{\text{RX}} \ \alpha_{\text{SMF}} \ \alpha_{\text{TX}} \ \alpha_{\text{AOP}} \ r_{\text{PD}} \ p_{0} \end{split}$$

 $i_N \triangleq RX$ input referred noise current; all sources $\alpha_N \triangleq RX$ input noise current loss vs. reference i_{ND} , i_0 , BW $\triangleq RX$ input noise current density, reference, bandwidth $i_N = i_{ND} \sqrt{BW}$ $i_{ND} = \alpha_N i_0$ $i_N = \alpha_N i_0 \sqrt{BW}$ $snr = (i_{SIG} / i_N)^2$

 $\sqrt{\text{snr}} = \alpha_{\text{AVG}} \alpha_{\text{RX}} \alpha_{\text{SMF}} \alpha_{\text{TX}} \alpha_{\text{AOP}} r_{\text{PD}} p_0 / (\alpha_{\text{N}} i_0 \sqrt{\text{BW}})$

Coherent (CH) Signal Path

 $p_{\text{IN-TX}} = 4 \alpha_{\text{LS}} \alpha_{\text{TEC}} p_0 \qquad p_{\text{RX}} = \alpha_{\text{SMF}} \alpha_{\text{TX}}$ $p_{\text{TX}} = \alpha_{\text{G}} \alpha_{\text{TX}} \alpha_{\text{AOP}} p_{\text{IN-TX}} \qquad p_{\text{PD-RX}} = \alpha_{\text{RX}} p_{\text{RX}} / 4$ $p_{\text{IN-LO}} = 4 (1 - \alpha_{\text{LS}}) \alpha_{\text{TEC}} p_0 \qquad p_{\text{LO}} = p_{\text{IN-LO}} \qquad p_{\text{PD-LO}} = \alpha_{\text{LO}} p_{\text{LO}} / 4$ $i_{\text{SIG}} = \alpha_{\text{AVG}} r_{\text{PD}} 2 \sqrt{(p_{\text{PD-RX}} p_{\text{PD-I}})}$

Coherent (CH) Signal Path Variables

 $\begin{array}{l} p_{0}\triangleq \text{Input POP (Peak Optical Power) reference} \\ \alpha_{\text{TEC}}\triangleq \text{Input POP loss due to laser TEC current} \\ \alpha_{\text{LS}}\triangleq \text{TX input POP loss due to (1-}\alpha_{\text{LS}}) \text{ split with LO input} \\ p_{\text{IN-TX}}\triangleq \text{TX input POP = AOP since CW} \\ \alpha_{\text{AOP}}\triangleq \text{TX POP to AOP modulation loss vs. MD (mod. drive)} \\ \alpha_{\text{TX}}\triangleq \text{TX path intrinsic loss at modulator bias point} \\ \alpha_{\text{G}}\triangleq \text{TX optical gain } (\alpha_{\text{G}}=1 \text{ if no amplification}) \\ p_{\text{TX}}\triangleq \text{TX total output AOP} \\ \alpha_{\text{SMF}}\triangleq \text{Link total power loss (connectors, SMF, other passives)} \end{array}$

Coherent (CH) Signal Path Variables, cont.

 $\begin{array}{l} p_{RX} \triangleq RX \text{ total input AOP} \\ p_{LO} \triangleq RX \text{ LO input AOP} \\ \alpha_{RX}, \, \alpha_{LO} \triangleq RX, \, RX \text{ LO path intrinsic loss} \\ p_{PD,} \, r_{PD} \triangleq RX \text{ balanced PD pair input AOP, responsivity} \\ \alpha_{AVG} \triangleq PD \text{ AOP to average electrical signal power loss vs. MD} \end{array}$

Coherent (CH) SNR

 $i_{SIG} \triangleq RX$ balanced PD pair signal current $i_{SIG} = \alpha_{AVG} r_{PD} 2 \sqrt{(p_{PD-RX} p_{PD-IG})} \cos(\Phi)$ $cos(\Phi) \triangleq 1, \ \alpha_{LS} \triangleq 1/2, \ \alpha_{LO} \triangleq \alpha_{RX}$ $i_{SIG} = \alpha_{AVG} \alpha_{RX} \sqrt{(\alpha_{SMF} \alpha_G \alpha_{TX} \alpha_{AOP})} \alpha_{TEC} r_{PD} p_0$ $i_N \triangleq RX$ input referred noise current; all sources $\alpha_{N} \triangleq RX$ input noise current loss vs. reference i_{ND} , i_0 , BW \triangleq RX input noise current density, reference, bandwidth $i_{ND} = \alpha_N I_0$ $i_{N} = \alpha_{N} i_{0} \sqrt{BW}$ $snr = (i_{SIG} / i_N)^2$ $\sqrt{\text{snr}} = \alpha_{AVG} \alpha_{BX} \sqrt{(\alpha_{SME} \alpha_G \alpha_{TX} \alpha_{AOP}) \alpha_{TEC} r_{PD} p_0} / (\alpha_N i_0 \sqrt{BW})$

$\sqrt{(snr_{DD}/snr_{CH})}$

$$\begin{split} &\sqrt{snr_{DD}} = \alpha_{AVG} \, \alpha_{RX} \, \alpha_{SMF} \, \alpha_{TX} \, \alpha_{AOP} \, r_{PD} \, p_0 \, / \, (\alpha_N \, i_0 \, \sqrt{BW}) \\ &\sqrt{snr_{CH}} = \alpha_{AVG} \, \alpha_{RX} \, \sqrt{(\alpha_{SMF} \, \alpha_G \, \alpha_{TX} \, \alpha_{AOP})} \, \alpha_{TEC} \, r_{PD} \, p_0 \, / \, (\alpha_N \, i_0 \, \sqrt{BW}) \\ &r_{PD-DD} \, \triangleq \, r_{PD-CH} \\ &BW_{DD} \, \triangleq \, BW_{CH} \\ &\sqrt{(snr_{DD} \, / \, snr_{CH})} = \alpha_{AVG-DD} \, \alpha_{RX-DD} \, \alpha_{SMF} \, \alpha_{TX-DD} \, \alpha_{AOP-DD} \, \alpha_{N-CH} \\ & \quad / \, \alpha_{AVG-CH} \, \alpha_{RX-CH} \, \sqrt{(\alpha_{SMF} \, \alpha_G \, \alpha_{TX-CH} \, \alpha_{AOP-CH})} \, \alpha_{TEC} \, \alpha_{N-DD} \end{split}$$

$\Delta SNR_{DD-CH} = SNR_{DD} - SNR_{CH} dB$

$$\begin{split} A &\triangleq \text{loss in optical -dB} \\ A &= -10 \text{log}_{10}(\alpha) \\ \Delta \text{SNR}_{\text{DD-CH}} &= \text{SNR}_{\text{DD}} - \text{SNR}_{\text{CH}} = 10 \text{log}_{10}(\text{snr}_{\text{DD}} / \text{snr}_{\text{CH}}) \\ \Delta \text{SNR}_{\text{DD-CH}} / 2 &= -(A_{\text{AOP-DD}} + A_{\text{TX-DD}} + A_{\text{SMF}}) \\ &+ (A_{\text{AOP-CH}} + A_{\text{TX-CH}} + A_{\text{G}} + A_{\text{SMF}}) / 2 + A_{\text{TEC}} \\ &- (A_{\text{AVG-DD}} + A_{\text{RX-DD}} - A_{\text{N-DD}}) \\ &+ (A_{\text{AVG-CH}} + A_{\text{RX-CH}} - A_{\text{N-CH}}) \end{split}$$

$\Delta SNR_{DD-CH} dB Examples, 4dB SMF Link$

L	∆SNR _{DD-CH} Scenario dB		1. Equal laser DC power		2. Equal total input AOP		3. Equal TX output AOP	
Ex. #	TX & RX Implementation		NRZ - QPSK	PAM4 - QAM16	NRZ - QPSK	PAM4 - QAM16	NRZ - QPSK	PAM4 - QAM16
1	1 Ideal TX & RX no loss DD ER = ∞, CH MD = V_{π}		5.4		-2.6		-5.6	-8.1
2	DD CWDM4 TFF DML TX ER = 4.8, SiP CH MD = V_{π}		15.4		7.4		-8.6	-11.1
3	DD CWDM4 TFF EML TX ER = 7, SiP CH MD = V_{π}		11.5		3.5		-9.3	-11.8
4	DD PSM4 SiP TX ER = 7, SiP CH MD = V_{π}		9.5		1.5		-10.3	-12.8
5	DD CWDM4 SiP TX ER = 7, SiP CH MD = V_{π}		1.5		-6.5		-16.3	-18.8

Coherent vs. IMDD SNR Relations

Application	Direct Detection	NRZ / PAM4 SNR	SNR	Coherent QPSK / QAM16 SNR		
	TX RX		Relation	ТХ	RX	
Laser DC Power Constrained 4dB Link Loss	EML, DML single λ or TFF, PLC WDM	PIN single λ or TFF, PLC WDM	>>	SiP	SiP	
	single λ SiP (PSM)	single λ SiP (PSM)	>>	SiP	SiP	
	WDM SiP	WDM SiP	~	SiP	SiP	
TX Out Power Constrained	Any	PIN	<<	SiP	SiP	

 For most datacenter links, IMDD has better SNR than Coherent, contrary to conventional wisdom

Mini Boot Camp - Is Coherent Right For You?

$$\begin{array}{ll} L_{Path} & \triangleq Loss \ of \ Path \ in \ optical \ dB \\ L_{LSR_to_P_Diode} & = L_{TX} + L_{Link} + L_{RX} \\ \Delta SNR_{DD-CH} & = SNR_{DD} - SNR_{CH} \\ Scenario \ 2 & = Equal \ Laser \ Power \end{array} \begin{array}{ll} (SNR, \ Direct \ Detection \ - \ Coherent) \\ (TEC_{CH} \ current \ not \ included, \ p.36) \end{array}$$

 $\Delta \mathsf{SNR}_{\mathsf{DD-CH}} \approx (\mathsf{L}_{\mathsf{TX-CH}} + \mathsf{L}_{\mathsf{Link-CH}} + 2\mathsf{L}_{\mathsf{RX-CH}}) - 2(\mathsf{L}_{\mathsf{TX-DD}} + \mathsf{L}_{\mathsf{Link-DD}} + \mathsf{L}_{\mathsf{RX-DD}})$

- 100G DML NRZ CWDM4 vs. 100G SiPh QPSK Coherent (Ex. 2 on p.36)
 △SNR_{DD-CH} ≈ (17 + 4 + 12.5) 2(4 + 4 + 5) = 7.5dB
- 100G DML NRZ CWDM4 vs. 100G SiPh QPSK Coherent + 12dB OC switch ∆SNR_{DD-CH} ≈ (17 + (4 +12) +12.5) - 2(4 + (4 +12) + 5) = -4.5dB (16dB is the same loss as 40km of SMF, i.e. like a Metro link)

Outline

- Datacom Rates
- Coherent in Telecom
- Coherent in Datacom
- Silicon Photonics

Datacenter and Silicon Photonics (SiPh)

- What's important for Datacenter optics
 - Cheap laser(s)
 - Cheap SNR (low loss)
 - Cheap assembly and packaging
- How does SiPh stack-up?
 - Si is an indirect band-gap semiconductor, so it's a lousy light amplifier
 - Si therefore makes a lousy LASER (LA stands for Light Amplification)
 - SiPh has higher loss than other technologies like free space optics
 - SiPh packaging is comparable in cost to conventional packaging

Silicon Photonics Myth 1

- SiPh is low cost
 - SiPh is expensive when all costs are properly accounted for
 - This includes process development, components development, modelling, masks, testing, yield improvement, and others
 - SiPh to have decent cost, requires very high yield of SiPIC, process steps, and integrated assembly
 - There are many yield pitfalls, just like in conventional optics
- Why the myth?
 - SiPh has inferior performance to conventional datacom transceivers
 - If you can't sell on value, sell on price
 - Low cost is the only marketing claim that can be made

Silicon Photonics Myth 2

- SiPh design is like CMOS ASICs
 - The two largest ASIC CAE companies (Synopsys and Cadence) have similar revenue (~\$5.5B) to the entire Datacom optics industry
 - The true cost of developing just PDKs for advanced CMOS nodes is comparable to the entire R&D budget of an optical transceiver vendor
 - CMOS tool predictability results in first pass success of complex ASICs
- SiPh tools do not predict final product performance
- Assembled and packaged SiPh performance is not modelled
- Any successful design effort requires device and process engineers

Silicon Photonics Myth 2 Counter Point

- With proper investment and effort, SiPh Tools can give good results
- 40Gb/s and 56Gb/s TX eyes, Finisar 400G DR4 prototype SiPIC, 2014

G. Denoyer, C. Cole, et al., "Hybrid Silicon Photonics Circuits and Transceiver for 50Gb/s NRZ Transmission Over Single-Mode Fiber, Journal of Lightwave Technology, vol. 33, no. 6, 15 Mar. 2015.

Cisco Lightwire 100G LR4 CPAK

Luxtera PSM4 SiPh QSFP28

Fig. 7 Optical Interfaces to a 4x14 Gbps transceiver Si Photonics IC.

Fig. 8 Assembly of Si Photonic transceiver system: Si Photonics IC, light source and fiber interface.

Intel PSM4 SiPh QSFP28

Acacia 100G Coherent SiPh

- The value proposition of SiPh is integration of many optical components
- To be successful, SiPh has to deliver performance not achievable with conventional optics, even if it costs more

Intel CWDM8 Prototype SiPh

Jeffrey B. Driscoll, et al., "First 400G 8-Channel CWDM Silicon Photonic Integrated Transmitter", 2018 IEEE 15th International Conference on Group IV Photonics (GFP), 29-31 Aug. 2018.

Figure 2: Representative output eve from a CWDM8 transmitter at (a) 40C. (b) 60C. and (c) 70C.

Luxtera shipped an 8 channel PSM8 SiPh product)

Chris Cole

SiPh Predictions

- SiPh 4 Channel transceivers have no advantage over conventional optics
- The stampede of 400G DR4 QSFP-DD SiPh transceivers from Intel, Cisco/Luxtera, Cisco/Acacia, Elenion, (Finisar before dropping out of the race), and other smaller companies will get no ROI on their investment
- Me too products rarely bring success
- SiPh has to deliver unmatched performance only achievable with large scale photonic integration.
- To be successful, SiPh has to be about value, not price.
- There is no other way to justify the huge investment required

Thank You

